|
|
|
|
|
|
THOMAS EDISON/ 2011 ( Satoshi Kinoshita )
Series: | Prints on paper: Portraits 3 | Medium: | Giclée on Japanese matte paper | Size (inches): | 16.5 x 11.7 (paper size) | Size (mm): | 420 x 297 (paper size) | Edition size: | 25 | Catalog #: | PP_0242 | Description: | From an edition of 25. Signed, titled, date, copyright, edition in pencil on the reverse / Aside from the numbered edition of 5 artist's proofs and 2 printer's proofs.
"I am proud of the fact that I never invented weapons to kill."
- Thomas A. Edison
Thomas Edison -
Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventor and businessman. He developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electric light bulb. Dubbed "The Wizard of Menlo Park" (now Edison, New Jersey) by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large teamwork to the process of invention, and therefore is often credited with the creation of the first industrial research laboratory.[1]
Edison is the fourth most prolific inventor in history, holding 1,093 US patents in his name, as well as many patents in the United Kingdom, France, and Germany. He is credited with numerous inventions that contributed to mass communication and, in particular, telecommunications. These included a stock ticker, a mechanical vote recorder, a battery for an electric car, electrical power, recorded music and motion pictures.
His advanced work in these fields was an outgrowth of his early career as a telegraph operator. Edison originated the concept and implementation of electric-power generation and distribution to homes, businesses, and factories – a crucial development in the modern industrialized world. His first power station was on Manhattan Island, New York.
Reference:
1. ^ Walsh, Bryan. "The Electrifying Edison." Web: Time July 5, 2010
-http://en.wikipedia.org/wiki/Thomas_Edison
Phonograph -
The phonograph record player, or gramophone (from the Greek: γράμμα, gramma, "letter" and φωνή, phōnē, "voice"), is a device introduced in 1877 that has had continued common use for reproducing (playing) sound recordings; although when first developed, the phonograph was used to both record and reproduce sounds. The recordings played on such a device generally consist of wavy lines that are either scratched, engraved, or grooved onto a rotating cylinder or disc. As the cylinder or disc rotates, a needle, or other similar object on the device, traces the wavy lines and vibrates to reproduce the recorded sound waves.
The phonograph was invented in 1877 by Thomas Alva Edison at his laboratory in Menlo Park, New Jersey, USA.[1][2][3][4] On February 19, 1878, Edison was issued the first patent (U.S. patent #200,521) for the phonograph.[5] While other inventors had produced devices that could record sounds, Edison's phonograph was the first to be able to reproduce the recorded sound. (In announcing the demonstration, Scientific American noted that the non-reproducing devices that preceded Edison's had been built by Marey and Rosapelly, Édouard-Léon Scott de Martinville and Barlow.)[6] Although Edison began experimenting on the phonograph using wax coated paper as a recording medium, his phonograph recorded sound onto a tinfoil sheet phonograph cylinder. Alexander Graham Bell's Volta Laboratory made several improvements in the 1880s, including the use of wax-coated cardboard cylinders, and a cutting stylus that moved from side to side in a "zig zag" pattern across the record. Then at the turn of the century, Emile Berliner initiated the transition from phonograph cylinders to gramophone records: flat, double-sided discs with a spiral groove running from the periphery to near the center. Other improvements were made throughout the years, including modifications to the turntable and its drive system, the needle and stylus, and the sound and equalization systems.
The gramophone record was one of the dominant audio recording formats throughout much of the 20th Century. However, that status was eventually replaced by the compact disc and other digital recording formats.
First phonograph:
Thomas Alva Edison conceived the principle of recording and reproducing sound between May and July 1877 as a byproduct of his efforts to "play back" recorded telegraph messages and to automate speech sounds for transmission by telephone.[13] He announced his invention of the first phonograph, a device for recording and replaying sound, on November 21, 1877 (early reports appear in Scientific American and several newspapers in the beginning of November, and an even earlier announcement of Edison working on a 'talking-machine' can be found in the Chicago Daily Tribune on May 9), and he demonstrated the device for the first time on November 29 (it was patented on February 19, 1878 as US Patent 200,521). "In December, 1877, a young man came into the office of the SCIENTIFIC AMERICAN, and placed before the editors a small, simple machine about which very few preliminary remarks were offered. The visitor without any ceremony whatever turned the crank, and to the astonishment of all present the machine said : " Good morning. How do you do? How do you like the phonograph?" The machine thus spoke for itself, and made known the fact that it was the phonograph..."[14]
Edison presented his own account of inventing the phonograph. "I was experimenting," he said, "on an automatic method of recording telegraph messages on a disk of paper laid on a revolving platen, exactly the same as the disk talking-machine of to-day. The platen had a spiral groove on its surface, like the disk. Over this was placed a circular disk of paper; an electromagnet with the embossing point connected to an arm travelled over the disk; and any signals given through the magnets were embossed on the disk of paper. If this disc was removed from the machine and put on a similar machine provided with a contact point, the embossed record would cause the signals to be repeated into another wire. The ordinary speed of telegraphic signals is thirty-five to forty words a minute; but with this machine several hundred words were possible."
"From my experiments on the telephone I knew of how to work a pawl connected to the diaphragm; and this engaging a ratchet-wheel served to give continuous rotation to a pulley. This pulley was connected by a cord to a little paper toy representing a man sawing wood. Hence, if one shouted: ' Mary had a little lamb,' etc., the paper man would start sawing wood. I reached the conclusion that if I could record the movements of the diaphragm properly, I could cause such records to reproduce the original movements imparted to the diaphragm by the voice, and thus succeed in recording and reproducing the human voice."
"Instead of using a disk I designed a little machine using a cylinder provided with grooves around the surface. Over this was to be placed tinfoil, which easily received and recorded the movements of the diaphragm. A sketch was made, and the piece-work price, $18, was marked on the sketch. I was in the habit of marking the price I would pay on each sketch. If the workman lost, I would pay his regular wages; if he made more than the wages, he kept it. The workman who got the sketch was John Kruesi. I didn't have much faith that it would work, expecting that I might possibly hear a word or so that would give hope of a future for the idea. Kruesi, when he had nearly finished it, asked what it was for. I told him I was going to record talking, and then have the machine talk back. He thought it absurd. However, it was finished, the foil was put on; I then shouted 'Mary had a little lamb', etc. I adjusted the reproducer, and the machine reproduced it perfectly. I was never so taken aback in my life. Everybody was astonished. I was always afraid of things that worked the first time. Long experience proved that there were great drawbacks found generally before they could be got commercial; but here was something there was no doubt of."
The music critic Herman Klein attended an early demonstration (1881-2) of a similar machine. On the early phonograph's reproductive capabilities he writes "It sounded to my ear like someone singing about half a mile away, or talking at the other end of a big hall; but the effect was rather pleasant, save for a peculiar nasal quality wholly due to the mechanism, though there was little of the scratching which later was a prominent feature of the flat disc. Recording for that primitive machine was a comparatively simple matter. I had to keep my mouth about six inches away from the horn and remember not to make my voice too loud if I wanted anything approximating to a clear reproduction; that was all. When it was played over to me and I heard my own voice for the first time, one or two friends who were present said that it sounded rather like mine; others declared that they would never have recognised it. I daresay both opinions were correct."[15]
Notes:
1. ^ "The Incredible Talking Machine". Time Inc..
2. ^ "Tinfoil Phonograph". Rutgers University.
3. ^ "The History of the Edison Cylinder Phonograph". Library of Congress.
4. ^ "The Biography of Thomas Edison". Gerald Beals.
5. ^ "IMPROVEMENT IN PHONOGRAPH OR SPEAKING MACHINES". United States Patent Office.
6. ^ Scientific American. 14 December 1877.
13. ^ Patrick Feaster, "Speech Acoustics and the Keyboard Telephone: Rethinking Edison's Discovery of the Phonograph Principle," ARSC Journal 38:1 (Spring 2007), 10-43; Oliver Berliner and Patrick Feaster, "Letters to the Editor: Rethinking Edison's Discovery of the Phonograph Principle," ARSC Journal 38:2 (Fall 2007), 226-228.
14. ^ Scientific American July 25, 1896 Machine-history.com
15. ^ Klein, Herman (1990). William R. Moran. ed. Herman Klein and The Gramophone. Amadeus Press. p. 380. ISBN 0931340187.
-http://en.wikipedia.org/wiki/Phonograph
| | | send price request |
|
|
|
|
|
Gallery opening
500 Fifth Avenue, Suite 1820 (Between 42nd and 43rd)
...
|
|
more
|
|